At launch the satellite solar panels are folded against the body of the satellite (stowed configuration) to minimize space and allow the satellite to fit into the faring of the launch vehicle. Once the satellite has been placed into Geosynchronous orbit the ACS system is activated to point the proper axis of the satellite at the earth. This process is called ACS initialization and Earth capture activation. During this period the satellite is being powered by the batteries. Once the Earth sensors are activated and the ACS system is locked onto the Earth, the solar panel release mechanization can be actuated to allow the arrays to unfold and lock into a deployed position. With the arrays deployed the solar array drive system is activated and commanded to track the Sun. The following animation shows the release of the North panel, then the South panel, followed by the positioning of the panels to point directly at the sun.

This would be the worst case condition where the arrays are pointed 180 degrees away from the Sun, the arrays are typically deployed at a time of day that allows them to be pointed at the Sun so they only require minor pointing changes to peak their power output. With a 180 degree pointing offset as shown the arrays would be commanded to move in opposite directions (one clockwise and the other counter clockwise) at the same time. From the ACS control standpoint the torques on the body of the satellite would relatively cancel and minimize the error correction required by the ACS system. After the the arrays are peaked on the Sun the Solar array drive system is commanded to normal tracking mode to maintain this pointing through a full 360 degrees rotation over the course of the day. As soon as there is adequate power being generated from the arrays, the power load will transition from battery to array power and battery charging can be started.