Archive for the ‘The Solar System’ Category

Mercury The closest Planet to the Sun

Here is a video that I put together than will provide more information about the planet Mercury.

A good resource for more information is the NASA Planetary Page that is found at http://solarsystem.nasa.gov/index.cfm

How Comets get their tail.

Comets start out as a dark object traveling through deep cold space. This shows how they grow a tail as they enter the warmer regions of space. A comets tail can stretch for many thousands of miles.

If you would like to read along, here is the text!

Comets are believed to have a solid core, and accumulate additional dust and ices on its surface as they travel deep into the Oort Cloud. As the comets elliptical orbit brings it back closer to the Sun, it approaches the distance of the asteroid belt, outside the orbit of Mars, where its ices begin to turn to gas, releasing hydrogen, carbon, oxygen, nitrogen, and other substances in the form of vapors and dust particles. They are carried away from the comet by the Solar wind, forming a tail. On its return path it cools and the tail goes away until the next trip.

Our Solar System

This animation shows our Solar System with the planets and dwarf planets in order orbiting the Sun.

If you would like to read along, here is the text!

Here we see our Sun orbited by the planets. The planets and dwarf planets are shown in order from the closest to the Sun, they are Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn, Uranus, Neptune, Pluto, Haumea, Makemake and Eris.

The Outer Solar System is home to the Gass Giants, Jupiter and Saturn, Ice Giants Uranus and Neptune, Comets, Centaurs, and the Dwarf Planets Pluto, Haumea, Makemake and Eris. Saturn, Uranus and Neptune are encircled by planetary rings of dust, ices and other small objects.

The 4 terrestrial planets, Mercury, Venus, Earth and Mars, the asteroid belt and the Dwarf planet Ceres make up the Inner Solar System.

The Solar System consists of the Sun and its planetary system of eight planets, dwarf planets, their moons, and other non-stellar objects. It formed 4.6 billion years ago from the gravitational collapse of a giant molecular cloud.

The Inner Solar System

This animation shows the inner Solar System with the planets orbiting the Sun.


If you would like to read along, here is the text!

The inner Solar System is the region comprising the 4 terrestrial planets, and the asteroid belt that includes the Dwarf planet Ceres. The asteroid belt resides between the Orbits of Mars and Jupiter, it is thought to be remnants from the Solar System’s formation that failed to form a planet because of the gravitational interference of Jupiter.

The four inner planets have dense, rocky compositions, which form their crusts and mantles, and metals such as iron and nickel, which form their cores. The closest, smallest, and fastest planet, is Mercury. Next is Venus the hottest, similar in structure, and size to Earth, the planet we live on, is the third, Then we have, Mars, a cold desert world. It is half the diameter of Earth.

Three of the four inner planets, Venus, Earth and Mars, have atmospheres substantial enough to generate weather. All orbit the Sun in a counter clock wise direction, have impact craters and tectonic surface features such as rift valleys and volcanoes.

The Inner Planets

Take a look at the first four planets in our Solar System. This animation shows each planet zoom in and rotate then zoom out. The textures of the planets are maps made by NASA and found on the WEB.

If you would like to read along, here is the text!
Mercury
Mercury Orbits, the Sun in 88 days, it’s the closest planet to the Sun, fastest, and the smallest planet in the Solar System, .055 the mass of Earth. Its only known geological features besides impact craters are lobed ridges, produced by a period of contraction. The almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.

Venus
Venus orbits, the Sun in 224.70 Earth days, it’s close in size to Earth, has a rocky mantle around an iron core, substantial atmosphere and evidence of internal geological activity. However, its atmosphere is ninety times as dense. The hottest planet, with surface temperatures over 400 °C, due to the greenhouse gases in the atmosphere.

Earth
Earth, the largest and densest of the inner planets, the only one to have current geological activity, and the only place where life is known to exist. Orbits the Sun in 365.26 days. Its liquid hydrosphere is unique among the terrestrial planets, and the only planet where plate tectonics has been observed. The atmosphere has 21% free oxygen.

Mars
Mars is half the size of Earth. Orbits the Sun in 686.98 Earth days. It’s atmosphere is .6% of that of Earth, made of Nitrogen, Argon, and mostly Carbon Dioxide. The surface has a vast number of volcanoes such as Olympus Mons, rift valleys such as Valleys Marineris . It’s red color comes from iron oxide, rust in its soil.

Lunar Orbit of the Earth

This demonstrates the orbit of the Moon around the Earth and is a good companion to the earlier post Tilt in Earths axis. NASA defines the period of the Moon’s orbit to be one complete orbit in 27.3215 days that translates to 27 days, 7 hours, and 43 minutes. The cycles or phases of the Moon are due to it’s orbit around the Earth and the angle that the light from the Sun illuminates the Moon. As demonstrated in this animation as the Moon progresses through it’s orbit it will cycle from full illumination (the Full Moon) to total darkness (called new Moon) and back to full illumination as viewed on the earth. The tilt in the Moons axis is 1.54 degrees and the orbit has a 5.14 degree inclination to the Sun line, when added together the resulting tilt in axis is a total of 6.68 degrees.

This animation shows the spin of the Earth and movement of the Moon relative to the Moons orbit period. You can also see how the the phase of the Moon is based on it’s location in the orbit.

Tilt in Earths axis

This demonstrates the tilt of 23.44 degrees in the Earths axis, it is referenced from the orbital plain, also called the Sun line. The tilt in the Moons axis is 1.54 degrees and the orbit has a 5.14 degree inclination to the Sun line, when added together the resulting tilt in axis is a total of 6.68 degrees.


This animation shows the spin of the Earth and movement of the Moon relative to the Moons orbit period. You can also see how the the phase of the Moon is based on it’s location in the orbit.

Earth’s Orbit of the Sun

This is a simple AVI that demonstrates the Earth’s orbit of the Sun. It starts at the left of the screen in Winter solstice with the Earth axis tilted away from the Sun and progresses through the full orbit and cycle of seasons. This shows that the Earth’s axis remains tilted at a 23.45 degree angle throughout it’s orbit. Based on Newton’s Law’s, an object in motion will remain in motion, the effects of friction, resistance and gravitational effects of other celestial bodies in space are minimized due the Earth’s mass and velocity.  As we all know the Earth spins 360 degrees in a day and this gives it gyroscopic stiffness in this axis orientation throughout it’s orbit helping it to resist these outside influences. The common misconception is that the Earth tilts back and forth throughout the year, where in fact it’s precession is caused by a function of it’s position in the orbit.

The intention was to provide a means to stimulate discussion in a training environment and to point out significant attributes of the Earth’s orbit from a general perspective. Any constructive comments are welcome and reasonable suggestions can be incorporated in future updates.

This has also been rendered as an AVI that runs 12 seconds start to finish in letterbox format at a resolution of 736×398. The file stops one frame from the starting point so it is set to loop smoothly.  To obtain a copy, follow the link to Turbosquid.

Reason for Seasons

The Earth’s pole is offset by 23.45 degrees, as it orbits the Sun it appears to precess above and below the equator.Earth's Seasons

Return top

INFORMATION

Shining light on satellites and how they operate. Drawing from over 30 years of knowledge and experience in all phases of the life of a satellite from concept, to operations, and through end of life. You will find short topics intended to give you an understanding of how they work, the general concepts, and principals used along with information on ground systems. There is also a section dedicated to topics that can be used as basic concept training along with links to animations and 3D models I have created.