Archive for the ‘Batteries’ Category

Lithium-ion batteries

Lithium-ion batteries (Li-ion) are increasingly being used on satellites as a replaced for Ni-Cad and Ni-Hyd batteries. They continue to build a heritage based on high reliability. When properly operated and maintained they provide reliable reserve power. Their design life meets the 15 years life expectancy required in on orbit operations of GEO satellites.

The most significant differences in these batteries are related to their operation. The deterioration of the state of charge capacity is attributed to the chemical breakdown of the Lithium component in the battery over time. To slow this process, during periods when the batteries are not being discharged and charged (storage) between eclipse seasons, the batteries are maintained at a lower temperature and at a reduced state of charge. Typically at 50 % state of charge and the temperature is reduced by 10 degrees C, this varies based on the manufactures recommendations. Automated command sequences are stored in the flight computer and triggered by battery telemetry monitors. The flight computer maintains the battery state of charge at the recommended level and during emergencies will turn off units in a predefined sequence to reduce the power load and extend the time on batteries.

Eclipse operations have also been automated requiring additional preparations. Initially the batteries are warmed up by changing the heater set-points to bringing them up to the normal operation temperature. The battery discharge for each eclipse is calculated and then the batteries are charged to a higher state of charge to account for the expected discharge. At the start of eclipse season the periods are only a few minutes, at the center or longest eclipse is 70 minutes then gradually decrease back to a few minutes in duration. Plotting the battery charge and the battery discharge over the eclipse season shows curves that resemble a football and is loosely referred to as the football curve. These charging values are entered into a table in the flight computer and the charging profile is enabled allowing charging to be completed autonomously. Implementation of a day counter allows the flight computer to progress through the charging schedule.

Over charging of Lithium-ion batteries will lead them to catastrophic failure. The battery is comprised of modules vs cells on other types of batteries. Independent charge/discharge circuits are included in each module and to protect the battery, bypass relays are installed to isolate week or failed modules from the circuit. If a module is bypassed the module is completely discharged forcing it to permanently fail. Once a module has been bypassed it can no longer be used. Each module operates at 4 to 4.5 volts one design for a 36 volt battery has 9 modules. With all modules functioning, each module is charged to 4.0 volts and with one module in bypass the remaining 8 modules are charged to 4.5 volts to compensate.

Prolonged short discharge and recharge cycles do not have a significant affect on the capacity of these batteries (noted at this time).

Manual battery recondition has been replaced by automated sequences with ground commanded table values.

Due to technological advancements in battery chemistry and design, Nickel hydrogen batteries batteries are starting to be replaced by more efficient Lithium-ion batteries as they prove their reliability.

Additional information about Lithium-ion batteries is available on Wikipedia

Nickel Hydrogen battery

Nickel hydrogen battery (NiH2 or Ni-H2) are used extensively on satellites. These batteries have replaced the use of NiCad batteries in almost all cases and continue to build a heritage based on high reliability. When properly operated and maintained they have provided reliable reserve power. Their design life exceeds the 15 years life expectancy required in on orbit operations of GEO satellites.

One of the most significant differences in these batteries is the power density to weight ratio allowing them to store more energy while reducing weight, These batteries are pressure vessels and the state of charge can be derived from the pressure and temperature of each cell. Another unique feature is that modules are available that contain 2 cells in one vessel. The design, testing and assembly of cells into a completed battery utilize similar process standards with minor changes. In addition to voltage, current and temperature, pressure monitoring sensors are included on the cells.

When monitoring cell voltages during eclipse or discharging, the voltage drop profile follows that similar to NiCad battery cells. The pressures will drop on a liner slope. Nearing the depletion of capacity the voltage will drop by as much as 0.1 to 0.2 volts over a few minutes resembling the initial rate at the start of discharge and below 1.0 volts dramatically drop off. These battery cells can be discharged safely below the 1.0 volt limitation placed on NiCad battery cells.

During charging, cell pressure and temperatures have to be closely monitored to ensure maximum charge and to prevent over pressure conditions that could lead to venting or bursting the pressure vessels. After discharging the batteries pressure and temperature are used in the determination of when the full state of charge is reached. Initially the battery will become endothermic and cool as it charges resulting in the battery heaters cycling on and off to maintain temperature. Once the battery state of charge nears 80% the battery will become exothermic and the temperature will start to rise. At this point the temperature rise rate should be monitored along with voltage and pressure. Monitoring the battery and cell voltages, the voltage will increase until they reach full charge and then slightly decrease before charging is complete. The pressure will rise and as it approaches full charge the ability to store energy at the high charge rate diminishes and the excess energy starts to be converted to heat account for the temperature increase and an increase in the rate pressure increases.

Prolonged short discharge and recharge cycles do not have a significant affect on the capacity of Nickel hydrogen batteries.

Battery recondition is not required and in most cases is preformed to obtain measurement and verification of battery aging. The open circuit stand is beneficial in minimizing the difference between the highest and lowest cell voltages, known as cell spreading and allows cells to reach a chemical balance and independent cell voltages to equalize.

Self discharge will occur in Nickel hydrogen batteries during storage periods due to the internal resistance of the battery. To overcome this affect a supplemental charge current at low level is applied to the battery known as a trickle charge.

Due to technological advancements in battery chemistry and design, driven by power storage density Nickel hydrogen batteries batteries are starting to be replaced by more efficient Lithium-ion batteries on GEO satellites.

Additional information about Nickel hydrogen batteries is available on Wikipedia

NiCad Batteries

Nickel-Cadmium batteries (NiCd or NiCad) have been used extensively on satellites. These batteries have a heritage based on high reliability that has been proven over time. When properly operated and maintained they have provided reliable reserve power well in excess of 15 years of on orbit operations on GEO satellites.

When monitoring cell voltages during eclipse or discharging operations, the voltage will drop by as much as 0.1 to 0.2 volts over the first few minutes then stabilize and decrease only 0.004 to 0.1 volts until it reaches less than 20 % of it’s capacity. Nearing the depletion of capacity the voltage will drop by as much as 0.1 to 0.2 volts over a few minutes resembling the initial rate at the start of discharge. It is critical to stop discharging when the voltage on any cell drops to 2/3 of the initial voltage. If the cell is rated at 1.5 volts the discharge termination voltage would be at 1.0 volt. To continue discharging below 1.0 volts could result cell reversal, cell failure or complete battery failure. During discharging of the battery the temperature will increase and stabilize.

After discharging the batteries the amount of energy removed must be calculated and 110 to 120% returned to reach the full state of charge. This is based on the internal resistance and inherent characteristics of the NiCad battery. Initially the battery will become endothermic and cool as it charges resulting in the battery heaters cycling to maintain temperature. Once the battery state of charge nears 80% the battery will become exothermic and the temperature will start to rise. Charging of NiCad batteries at higher temperatures can cause a chemical reaction that produces hydrogen or oxygen gasses in the battery. At this point the temperature rise rate should be monitored and if it exceeds a rate of 5 degrees per hour then charging should be terminated to minimize potential of gas buildup that could lead to cell failure or rupture. Monitoring the battery and cell voltages, the voltage will increase until they reach full charge and then slightly decrease before charging is complete.

Prolonged short discharge and recharge cycles can lead to a diminished capacity over time, this condition is known as memory discharge. In this condition the battery will discharge normally and then prematurely discharge rapidly to a secondary voltage level creating what appears as a step in the plotted voltage over time. By completing 2 full deep discharge and recharge cycles this condition can be minimized or eliminated. The process is called battery reconditioning it involves placing a large load on the battery and discharging it until the first cell reaches 1.0 volts (or 2/3 initial voltage) then reduce the load by one half. The voltage will slightly increase then decrease back to 1.0 volts again where the discharge is terminated. At this point the battery is left with no charge or load for a hour to allow the cells to stabilize. This open circuit stand is intended to allow cells to reach a chemical balance and independent cell voltages to equalize. This also minimizes the difference between the highest and lowest cell voltages, known as cell spreading. Charging current is applied and maintained until the battery reaches a full state of charge. This cycle is then repeated for a second time.

Self discharge will occur in NiCad batteries during storage periods due to the internal resistance of the battery. To overcome this affect a supplemental charge current at low level is applied to the battery known as a trickle charge.

Due to technological advancements in battery chemistry and design, driven by power storage density to weight ratio NiCad batteries have been replaced by more efficient Nickel hydrogen, and Lithium-ion batteries on GEO satellites.

Additional information about NiCad batteries is available on Wikipedia

Batteries used on satellites

Satellite EPS systems are designed to operate on the power produced from the Solar Arrays with a battery system to store and provide power during eclipse periods and emergencies. During initial launch and commissioning the batteries are charged and discharged in the process of supplementing the power generated from the Solar Arrays. Once in a stable GEO orbit the batteries are only used to provide power during eclipses and emergencies. In LEO orbits the batteries are used every orbit to provide power as the satellite passes behind the Earth and charging is started as soon as it re-enters Sun light.

To achieve the high reliability and exceptional performance requirements over the extended life time of the battery, strict standards are maintained in the assembly process. Individual battery cells are rigorously tested. The maximum charge capacity, peak voltage, internal resistance, discharge rate and end of discharge voltages are closely matched between all cells to insure that the cells are as close to identical as possible. Independent cell voltage sensors are installed on each cell to provide the ability to monitor their performance. Monitors are also installed to measure the total battery current providing a negative reading when the battery is discharging and a positive reading when the battery is being charged. Temperature sensors are strategically located on the completed battery to sample the temperature at significant locations. Excess heat is generated during the discharge and charging of the battery and extreme low temperatures are experienced during eclipse periods. Management of the recommended operational temperature range is achieved by mounting the battery on a thermally conductive surface with the ability to radiate excess heat into cold space. To counteract extreme cold conditions supplemental heaters are selected and installed to insure that the battery can be maintained above the minimum operational temperature requirements during these periods.

The three most commonly used battery types are Nickel-cadmium, Nickel hydrogen, and Lithium-ion batteries. The batteries are designed and manufactured with the storage capacity required to power the satellite during eclipse with additional margin to account for potential emergencies. To provide added protection, the system power requirements are normally supported by two batteries to protect against failure of a single battery.

Satellite operations staff closely monitor battery and cell voltages, temperatures and currents in addition to load current and voltage during eclipse periods and battery charging. This data is collected and used to calculate the proper charge to recharge ratio based on the battery type, charging current and time required to complete charging.

A simplified battery design example would be, if the satellite uses 3000 watts of power (a small satellite) at a voltage of 36 volts using NiCad batteries with a cell voltage of 1.2 volts. The number of cells in the battery would be (36/1.2) 30 cells. The current draw form the batteries would be approximately 83.3 amps. The longest eclipse is 70 minutes, this converted to amp hours is 1.167 hours, with the resulting current draw of (83.3 x 1.167) 97.25 amps from the batteries. Applying a margin of 25% to this shows that the battery would have to be rated for over 121.6 amp/hours of capacity or if two batteries are employed, a minimum of 60.8 amp/hours each to adequately power the satellite. To minimize cost or increase the margin this value or the next larger standard battery capacity value can be selected for use.

Return top

INFORMATION

Shining light on satellites and how they operate. Drawing from over 30 years of knowledge and experience in all phases of the life of a satellite from concept, to operations, and through end of life. You will find short topics intended to give you an understanding of how they work, the general concepts, and principals used along with information on ground systems. There is also a section dedicated to topics that can be used as basic concept training along with links to animations and 3D models I have created.